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We are using proton-conducting ceramics 
to convert H2O & CO2 into CH4 and O2
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We have been developing proton-conducting 
ceramics to convert natural gas into gasoline

• First inspired by CoorsTek, Inc.
– Dr. W. Grover Coors
– Long history with Mines

• Methane dehydroaromatization (MDA)
– Upgrade natural gas into benzene

– Suffers from poor CH4 conversion
– Thermodynamic limitation

• Proton-conducting membrane
– Remove H2 from product stream
– Shift thermo towards products
– Increase CH4 conversion
– Produce more C6H6 and the like

C6H6

CH4Image courtesy of 
Prof. Robert J. Kee, CSM

6 CH4 è C6H6 + 9 H2
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MDA produced breakthroughs in fuel-cell applications 
for efficient, distributed electricity generation
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Proton-conducting ceramics are an emerging 
material with broad energy applications

• Ceramic ion conductors are an active area of research
– Yttria-stabilized zirconia (YSZ) is the current state-of-the-art 
– Oxygen ions (O2-) serve as charge carriers
– Require 700 – 850 ºC operation

• Protonic ceramics have a number of performance benefits
– Small charge carrier (H+)
– Higher ionic conductivity
– Lower-temperature operation
• 500 – 600 ºC operation
• Lower degradation rates
• Lower cost balance of plant

• ABO3 perovskite structure
– BaCexZryY1-x-yO3-d

• Tune stoichiometry to                                                          achieve 
desired properties

Protonic Ceramic Fuel Cell
Anode: Porous nickel +

BCZY composite

Cathode: 
Porous perovskite

e’

e’

Dense membrane:
Barium cerate zirconate
BaCe0.2Zr0.6Y0.1O3-d

H2 è 2H+ + 2e-1

O2 + 4H+ + 4e’ ® 2H2O

H+
e’
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Our Phase I REBELS effort led to breakthroughs in 
intermediate-temperature fuel-cell performance

Time (hours)

Long-term operation under direct hydrocarbon fuels (no pre-reforming)

Device scale up and 
multi-cell stack integration

Stack costing reflects 
protonic-ceramic advantages
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Promising results justify further protonic-ceramic 
fuel-cell scale up to the 500-W stack level in Phase II

• New industrial partner: FuelCell Energy (Danbury, Connecticut, USA)

• Further scale up of cell size by order of magnitude

• Explore and mitigate degradation

• Optimize hydrocarbon internal reforming conditions

• Understand “value proposition” of protonic-ceramic fuel cells
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We are extending protonic ceramics for steam 
electrolysis, H2 generation, and energy storage

• Pure H2 product stream is formed, unlike O2- electrolyzers
• Eliminates costly downstream H2-separation processes
• Serves to store intermittent renewable energy in form of hydrogen
• Recent award from DOE Fuel Cell Technologies Office
– Two-year program; target start date of August 2018
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We are now extending protonic ceramics to 
chemicals synthesis for renewable-energy storage

• Ammonia presents an effective energy-storage solution
N2 + 3 H2 è 2 NH3

• Create carbon-neutral liquid fuel to store intermittent renewables
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Central objective is operation under 100% internal 
reforming of natural gas fuel premixed with steam

• Steam injected with CH4 fuel
• H2 consumption shifts chemistry

CH4 + 2 H2O è 4 H2 + CO2
• Gas transport through porous anode
– Optimal anode morphology

§ High porosity
§ Large pore diameters
§ Open microstructure

• Hydrocarbon internal reforming 
– Catalytic processes
– Optimal anode morphology

§ High catalyst surface area
§ Lower porosity
§ Tight microstructure

• Conflicting anode-design objectivesImage courtesy of Prof. R.J. Kee
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We have a new program with NASA for harnessing 
protonic ceramics to make fuel on Mars

• Convert CO2 and H2O into O2 and CH4
• NASA Space Technologies Research Fellowship
– Supports graduate student Duc Nguyen now at Kennedy
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Operation of ceramic electrochemical devices on 
Mars presents “balance-of-plant” challenges

• Operating temperature = 550 ºC
- Start-up challenges
- Insulation materials

• CO2 and H2O reactants
- Need preheating
- Need pumps / blowers

• Methane – oxygen products
- Must be stored at high pressure

• Dynamic control system
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Initial studies on CO2 hydrogenation and methane 
production shows reasonable selectivity to CH4

• CO2 conversion is modest
- Generally < 25%
- Necessitates large blowers

• CH4 selectivity is encouraging
- Approaches 60%
- Independent of current 

density

• Increasing current density
- Drives H+ across membrane
- Promotes CH4 formation
- Requires more solar power
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In summary, protonic-conducting ceramics could 
play a role in manned missions to Mars

• Convert Martian-derived CO2 into fuel and oxygen
- Next-generation MOXIE

• Early stage of technological development
- TRL 3-4?

• Development leveraged by terrestrial applications
- Fuel cells for efficient electricity generation
- Membrane reactors for renewable energy storage
- Significant DOE support

• Could also serve as electric generator
- Reversible operation is possible

• Industrial partner is moving technology to pre-commercial scale
- FuelCell Energy, Danbury, CT
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